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SUMMARY

A method of solution is presented for compressible fluid flow past
an elliptic cylinder by means of the variational method. The solution
is obtained as a function of thicbess ratio and free-stream Mach
number. Numerical examples are carried out for several thickness ratios
and Mach numbers and the re$niltssre compared with those obtained by
other methods. It is seen that the variational method yields good
results for flow past a thick body at a low Wch tier as well as for
flow past a thd.qbody at a high Mach nuuiber.

INTRODUCTION

IxIrecent ye=s the progress made in theory and practice of high-
speed aerodynamics has made all the more inqyx%ant the fact that one
should try to solve the equations of motion more accurately. u to
the difficulty of the nonlinearity of the equations, this problem has
been attacked alwsys by approximations.

For slender bodies there is the solution given in terms of the
thickness parameter, usually referred to as the Prandtl-Glauertmethod.
On the other hand the method of R~leigh-Janzen gives the solution in
powers of Mach nuniberand can be used in the case of thick bodies. This
method was applied by Hooker (reference 1) to the study of compressible
fluid flow past elliptic cylinders. But owing to the necessity of
expanding a certain function in the analysis, Hooker’s method cannot
suitably be applied for small fineness ratios. ~phLl by us% poggi‘S
method has investigated this problem (reference 2). Although his resuit
is expressed in finite terms, some infinite series must be used in the
course of the method. Moreover, Kaplan’s solution deals with the
velocity and pressure distributions on the surface of the cylinder only
and not in the interior of the domain. Imai and Aihara (reference 3)
also used the Rayleigh-Janzen method and obtained the flow Pst an—
elliptic cylinder in a more
Janzen method would involve

general manner. The use of the Rayleigh-
formidable comptiation beyond the second
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approdmat ion. For this reason this method is not very suitable.for
flowe at high Mach numbers. Erl (reference 4) used the msthod of
expressing the equations of motion in terms of the streamline curvature
and then integraixlngthem.

In this paper is presented a solution for compressible fluid flow
past an elliptic cylinder by the direct method following the calculus
of variations. The formulation of the variational principle in hydro-
dynamics was first due to Hargreaves (reference 5) who has shown that
the integral to be used in the variational principle is a linear function
of pressure. For steady irrotational flows, Bateman (reference 6) has
shown that the pressure energy is an extremum. He gives the i.ntegrand
as a function of the density and the velocity potential. In an earlier
Paper (reference 7) Bateman gives the integrand as a function of the
velocity and local veloci@ of sound. Bateman’s original.integral,
however, can not be directly used for fluid which occupies an fnfinite
domain. Braun (reference 8) used the same integxal without modification
and attempted to obtain an appro~te solution for uniform steady flow
past a circular cylinder by the use of Rayleigh-Ritz method and his
method leads to erroneous results. Wang (reference 9) modified the
integral for such cases and it is fundamentally this method that was
used by the author in this report for the study of flow past e13iptic I
cylinders.

An e13iptic coordinate system is used and in the set of simultaneous ,<
eqmtions given in the appendix the coefficients of the terms contain
as ~ters the thiclmess ratio of the ellipse and the free-stream
Mach number. Thus a mthod of solution for the flow past an elliptic
cylinder of any fineness ratio is indicated. The results are compared
with those obtained by Hookerj Kaplan, and I&-l.

me present work, carried CItiat t~ D@el ~e~~ School of
Aeronatiics, College of Engineering, New York University, is a mjor
part of a thesis mibmitted to the Graduate Division for the partial
fuM?illment of the degree of Doctor of Engineering Science and has been
made available to the NACA for pdilication because of its general
interest.

The author wishes ~atefully to aclamwledge the valuable sugges-
tions and gxhlance given to him by Dr. C. T. Wang in the pre~ation of
the thesis. The author also wishes to express his appreciation to
l?rofessorF. K. Teichmann for the facilities afforded to him.
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LIST OF SYMBOLS

a

CP
G= qmp- q2

velocity of sound

pressure coefficient

I variational integral

M Mach number (q/a)

P pressure

q local velocity

q~ maximumveloci~

u velocity of uniform psxallel flow at infinity

u velocity component in x-direction

v velocity component in y-direction

x) Y rectangular coordinates

z =x+iy=ccosh(~+iq)

7 ratio of specific heats, l.kO~ for air

v eccentric angle

E!)v ~elliptic coordinates

P density

$ velocity potential

6@ admissible variation of #

Subscripts:

i incompressible flow

—. .— ---— —.. — .— —- -—
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conditions at infinity

respective psxtial derivatives

.

EQUATIONS OF MWIION FOR COMPRESSIBLE FLUID FLOW

The various equations to be satisfied for steady, irrotational flow
of a compressible fhid are given below. The continuity equation in
two dimensions is

(1)

I?orthe flow to be irrotational one must satisfy another relation

av & o—.— =
ax &

(2)

For isentropic changes of state, the equation of state is

p = constant x p~

The Ner equations of motion in the integrated

a2+7-1q2=a2+ ~-1
2 0 2

where Y is the ratio of specific heats and a

form will then be

%32 (3)

is the velocity of
sound. The subscript o refers to the conditions at infinity. Since
in the variational principle, as explained later, a value of 7 = 2
will be used, the above equation of state is to be replaced by

p=A+

where A and B sre constar.rts.The
and the justification of us- 7 = 2
equation of state in the differential

Bp7

significance of such an equation
me given in reference 9. This
form is

.

,

J

*

.
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g=
dp

B7p7-1 = ~2

One substit~es equation (4) into equation (3) and introduces

(4)

u=g!

.=?$

Thus q2 = flxp+ %2. By this introduction of @, the irrotatio~ty

condition (equation (3)) is satisfied a priori. Equation (3) will now
take the form

Since the right-hand side of this relation is a constsat, it can be

replaced by ~ %2 ~~here %2 is dependent only upm the conditions

at infinity. men

+%’ -$.2- fffjB7p7-1 = 7 - 1
(5)

or

P= (Z#)+(qm2 - ,X2 - ,Y2)7+I

S@stittiing this value of p tio the equation of continuity (1), one
obtains the dfiferential equation for the velocity potentid

= o (6)

. . .. —__ . . . . .—. —. ——— ...——_ ._
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The boundary conditions on the velocity potential are as follows:
When the fluw is subsonic, the disturbances caused by the body would
vanish at infinity. Thus the velocity at infitity would be that of the
UnifOrm parallel flow. The boundary of the body would be a streamline
and so the normal derivative of @ is zero on the body. Expressed
mathematically, the boundary conditions are

The formulation of
nonviscous compressible

VIGUiYI’IONALPRINCIPLE

a vsriationd” printiple
fluid is given by Bateman (reference 7) .

(7)

for the motion of a

He indicates the associated titegral in the calculus of variations is
of the type

1= U G(q) dxdy

!..

Further, he suggests that for adiabatic conditions the appropriate form
of G iS

[
G(q) = 2a02 + (7 -

1X%2 - q21&
(8)

where ~ is the veloci_@ at infinity. Replacing a.z+~qoz

by ~ %2 results in

G(q) = (7 -
‘+%2 - q2)*

.

——-—
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Since the constad
Bateman’s integral

coefficient is
can be written

7

immaterial h a variational principle,
as

Y

A proof that the
Ner equation can be

For irrotational

integral, equation (9),gives
found in reference 9.

flow qp may be replaced by

equation (6) as

@x2 + @y2; then

Now @ is varied so that the variation b~ is zero on tk boundary
which”is not a Mretitij 51 = O become-s

Equation (10) can be modified as follows:

r— —

a
[d ‘m2-

1]
ffx2- fly#%@!zfdxdy+

!&2 1}fly*)%dy

(9)

its

(ga)

(lo)

+

(U)

B

—. . . -—. . — -——— -. -— . . . . . .———. - .— —...——— . . . -. -- — - - -
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With the aid of the divergence theorem, the first integral can be trans.
formed into a line integral taken on the boundary. This is r

(12)

The line integral taken on the body contoux will be zero since %=0
an

from boundary condition (7). The variation 5@ must be so chosen as
to approach zero on the other boundary. For flow in an infinite domain
a correction must be made so as to insure the vanishing of the line
integral as was carried out in reference 9. Although b~ approaches
zero at infinity the line integral taken on the infinite boundary may
be of finite value. This should be subtracted from integral (9), so
that from equation (n) the following expression remains

(13)

Since @ is ~ admissible variation, it follows that to satis~ this
relation-equation (6) must be satisfied h the

EIJXPl?ICCOORDINATES

whole domain. -

For solvtng two-dimensional flow past elliptic cylinders, it is
convenient to use elliptic coordinates and transform the integral,
equation (9), into the elliptic coordinate system.

Take ~ and q defined by the equation

z =x~iy=c cosh(~-!-iq)

where c is a real constant.

.
--- — —.— ———— —. ——.
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The above
would give

one
to
the

9

relation after separation of real and imagbwq parts

takes all values from zero to infinity for ~ and values from zero
2fl for ~. The curves ~ = Constant and T = Constant will be
directions of the cowdinate axes and are confocal ellipses and

hyperbolas, respectively. These me shown in figure 1: The angle q
is usually cald.edthe “eccentric angle.”

If a and b are the semimajor and serdadnor axes of the ellipse
given by ~ = ~o, then

a = c cosh go

l)=csinh~o

It follows that a2 - b2 = C2, and

a+b 2 ~.

T=ea-

The ratio b/a is the thickness ratio of

the function e
26O=a+b

~ is termed
a-

computation.

The modulus of transformation is

t

the ellipse and for shrplicity

in the author’s discussion and

given by

1 (14)

-— —-. ————-— -—-- -- —.- —— _- —————— -—-—
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If # is the velocity potential
co~nents normal and tangential

in
to
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elliptic coordinates, the velocity
an ellipse are

$~ fiq

( )
and——

2 l/2
respectively. Hence

C cosh2~ - COS q
(

C cosh2~ . co*~)@

Also the elemental area in the elliptic coordinate

d~ dq
da =

C2 cosh2~ - Cos%)

(15)

system is

(16)

AYPLICATIOIVOFRAYIEIGH-R33?ZMETHOD
,

After transforming the boundary-mlue problem into a variational
,

problem, the Rayleigh-Ritz method canbe used to obtain close approxima-
tions to the solution. Using relations obtained iu the previous section,
variational integral (9) in the elliptic coordinate system would be,
with a value of 2 for 7,

‘N 1
2

fi~2+fiq2 c2cosh2~-cos%~ ~d~
I= %2- c2coah2E

( %)
( d (17)

- Cos

and it is proved in reference 6 that for stisonic
is a maximum for all admissible variations of @.

flow the tntegral I

and consists ofThe Raylei

r

-Ritz method is a direct methd
approximating by a finite sequence of functions. For @ in the
integral (equation (17) ), mibstilnrte

(18)

— ——
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with ~ satis~ing the boundary conditions and with ~ as undeter-

mined parameters.

Since the required solution for @ makes the integral a maximum,
one may transform the variational problem into an ordinary maximizing
problem. Thus one can obtain a system of simultaneous equations by
taking partial derivatives with respsct to the various constants:

and so forth.
be obtained.

Solving these
Then

&_O &=O
●

&2 “ dEq

simultaneous equations, the constants can

problem.

In the case where more than one set
is obtained the solution which makes the
taken as the reqdred solution.

. . (l&)

and is a solution of themakes the integral (equation (17)) stationary

of values for these constants
integral a maxhmm is to be

In applying the
case when the domain

EXTENSION TO INFINITE DOMAIN

variational integral, equation (9), to the present
extends to infinity, the value of the integral

becomes infinite. But this does not prevent one from obtaining a solu-
tion by maximizing or minimizing such an inte~al. The difficulty
would arise only in the case when this integral has to be evaluated. “

There is another feature in connection with line integral (12)
which should be scrutinized carefully since it is taken around an
infinite boundary. This should be zero to satis~ the conditions upon
which the variational problem is formulated. Even though 5@ approaches
zero at infinity, the product b~ da ~ contain certain terms of zero
power in r. Then line integral (12) will have a finite value and will
have to be accounted for by mibtracting it from the integral of
equation (9).

- .——..—..— — ._. _ . . .. .— ..—— .- —— -- .-—
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Consider line titegral (12) around an ellipse given by a large
Value ofg ana

with @ assumed
distancee

()1where O —
cosh2~

then let 3 approach infinity. One obtains for

@E2+$2
n n f

f= - -
=2

(cosh25 - Cospq

as given in a later

q%$+

section, equation (23), at large

1’

()

o—
cosh2~

means terms approaching zero to the order of l/cosh~

and higher as ~jm.

In the line integral, ~ is ~ the dfiectio~ of the ~d ~o~.
an

Therefore

and the elemental len@h

ldds=~ 7

where h is the modulus of tranEformation. Hence

?r!?ida.%dq
h at

and with ~ as in equation (23), at large values of ~,

@ ds

[

= U(a+b)shh5cosq+0

(1

1
an

dq
cosh25

(19)

.—
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In equation (23), the assumption is that the flow at infinity is pre-
scri~ed and is <@al to

for large values of
assumed fi and the

@ = AU

Substituting these into

the-incompressible flow. Hence, the variation
~ will be the same as the difference between
incompressiblevelocity potential. Thus

line integral (1.2)

-1

)Ad-
13 cosh ~

After integrating and

()dq+O+
cosh2

the above expression be~omes

This is the term which should be
equation (17).

FIOW PAST AN

The velocity potential
cylinder defined by ~ = 50

$i = U(a

subtracted from the inte~al of

ELLIPTIC C3ZINDE3

(20)

(21)

for incompressible flow past an e12iptic
is

+ b) cosh (~ - go) cos ~ (22)

. .—— ------ —-
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where a and b are semiaxes of the ellipse. This can be readily
checked to satis~ Laplace~s equation in elliptic coordinates

~2ff, a2@- ()

a.# av2 ,

To investigate the two-dimensional flow of
past an elliptic cylinder given by E= Q, One
fOllowing fOrm:

3Cos q

%3
+.. .

cosh3(~ - 5.)

3Cos q

cosh (~ - ~o)

where @i is the potential for incompressible

and A33 are undetermhed parameters.

a compressible fluid
may assume @ in the

Cos q
+ A31 +

cosh3(~ - ~o)

(23)

flow and .All, ’13) A312

ti the above assumed potential (equation (23)) au the additio@
terms approach zero at infini~ to the order of l/cosh ~. This leaves
only the potential of the incompressible flow which is the boundary
condition at infinity. Also it can be seen that for the additional
termS the derivatives with respect to ~ vanish at lj= go. TWS the

normal velocity component on the body due to the additional terms is
zero. The assumed variation (equation (23)) therefore satisfies the
required boundary conditions. If the flow were not symmetrical.,one
would have to add to expression (23) terms containing sin q, Sinsq,
and SO forth.

The assumed @ function’(equation (23)) is now substituted into
the variational integral, equation (9). To cover the whole domafi
exterior to the ellipse given by ~ = ~o, th limits for ifiewation
are from O to 2X for q and from go to w for g. BY dmer-
entiating under tm. integral sign, one obtains the following four
simultaneous equations:

aI=o&=o %3
1

aI _. &( _.

~31 aA33
J

(24)
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Itiegrating these equations, four algebraic simultaneous equations in
the parameters AU, A13) A31> @ A33 are finally obtained and are

given in appendix A. The equations given in appendix A are divided
into two parts. The linear terms in the parameters are on the left-
hand aide of the equations. All the nonlinear terms are grouped
together and called Kl, K& K3, and K4. These are given at the

right-hand side of the equations, together with the constant terms.

NUMERICAIIIExAtmm

The flow past an elliptic cylinder of thickness ratio b/a = 0.5
when the Mach number of uniform flow at infinity is O.~ is investigated
and the method used in solvlng the equations is illustrated here.

The value of the major axis of the ellipse is taken as a unit of
dimension, with b/a = 0:5. Then

a+b
t=~=3

Ditide throughoti the equations of appendix
at i@bity, so as to make the coefficients

these values of U/ao, ~22 and t in the

A by the velocity of sound
nonikimensional. Slibatituting

four simultaneous eq~tions

of appendix A and evaluating all the coefficients, one obtains the
fo~owing system of equations:

1. 9930195kA~’ + 1. 67206436A13’ + 1. 62409948A31’ + 1. 32770102A33’ =
. .

0.09169413 + ~
2.25‘1’

1.67206426A~’+ 2. 2873726&~3 ‘ + l:3832566A3~’ + 1. 71470758A33’ =

0.03621830 -1-~
2.25 ‘2’

.

1. 624099~&’ + 1.3832566%13’ + 1. 964-62204A31” + 1.5920340%33’ =

0.07905474 + & K3‘ .
.

_, _____ -.—. —— .-. -—. —— -. . .. .-- ——— .—— —- .-. —— —
_--—
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1.32?T0102AU ‘ + 1.71470758A13 ! + 1.59203403A311 + 1.78968390A33r =

0.038w86 +~K4’”
2.25

wheqe Klr, ~’, K3r~ and K4’ are the proper values of Kl, ~,

K3, and K4 of appendix A with the values of t, U/ao, and qm2

stistittied and Au’, A13’, and so forth in the above set of equations
are the assumed coefficients of appendix A, each ditided by the velocity
of sound at infinity.

Now one may make use of Croti’s method (reference 10) and solve
the above set of equations in terms of the right-hand-side members of
each equation. Since the above matrix is symmetrical, it is quite easy
to obtain tle following expressiona:

A~’ = 4.67065623A1 - 3.95643729h2 - 4. 79816972A3 + 4. 5396629L4 ‘

A13‘ = -3 .95643629hl + 4.9970094~ + 4. 49078519A3 - 5. 8473605%4

A31t = -4. 79816982X1 + 4.49078533.2 + 6.8630705%3 - 6.84818730L4

’33 ‘ = 4.59396635?ul - 5.84736064$-6 .84818723A3 + 8.84494015x4

where

kl = 0.09169413+~K1’
2.25

~ = o.03621830 + ~2.25 Q’

h3 = 0.07905474 +&K3’.

X4 = 0.038w86 +~2.25
K4’

.— ——___ __ _ _ ——.



3R NACATN 2666 17

L

. .

For the computation of Aij’, first one puts all the nonlinear

terms as zero and obtains the values of the coefficients. Next these
are substituted in the complete equations and the values of the coef-
ficients are again solved for. This procedure “isrep?ated and the above
set of equations is solved by successive iterations, until the coef-
ficients iterate themsel=s within a desired accuracy.
are the values obtained:

A= ‘ = 0.08335840

-413’ = -0.05016832

A31* = o.oo71k746

1

%3’
= 0.00157309

J

These values me mibstituted in the expression for the
equation (23). The velocity at a point defined by the
on the elliptic cylinder is given by

1
q=

-L

C cosh250 - COS%-J112

The value of =50 is obtained from

t=e 250 =

With the value of ~ sfistituted in the

3

above

The follow3ng

(25)

veloci@ potential,
eccentric angle q

equat+on and af%er
dividing through by the velocity U at infinity, c@ becomes

~= 1 ()
Au 1

u
(

121+: sinq+— Sinq+
C cosh2~o - Cos%) i %

%13 ‘ A31‘ 3A33t

%
Cospq sin q + —

%
sinq+—

%
Cosaq sin q (26)

.—-. .—.—— —--—— ..— .—. —-—-—-. —— ——.. —.. .—



18

With the obtahed values
and ~ = 0.5, the above

NACA

(equations (25)) of the coefficients,
equtit 1011 WOULd

. .
‘-be

;=p(.,..,o.,2 -

These values
given in table 1.

of q/U are computed
The results are also

From the pressure-densityrelation

m 2666

.

b/a = 0.5,

(27)

for various angles q and are
shuwn plotted in figure 2.

for adiabatic flow one can
obtain (reference 11) the following relation between the local pressure
and pressure at infinity:

Note that 7 . 2 was used in the process of obtaidng a solution for p.
It is possible to use 7 = 1.5 or Y =-1.33} but it is seen that the
change in 7 does not alter the computed values of the velocities

.

appreciably.

Even though 7 = 2 is used for getting the velocities it is
proposed to use 7 = 1.4-05 in computimg ~essures. Then

The pressure computed as”above is shown in figure 3, as a pressure
coefficieti, against q and is compared with the pressure distributions
obtained by the Prandtl-Glauertmethod and the K&rm&n-Tsien method
(reference 12).

~ mibstittiing t = n/9 in equation (24), the flow past an
elliptic cylinder of thickness ratio 0.1 is computed when ~ = 0.8,
and the res&l.tsare shown in figures 4 and 5.
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.
Using Poggi’s method Kaplan (reference 2) has calculated the flow

past elliptic cylinders of thickness ratios 0.5 and 0.1. These results
are shown in tables 1 and 2 and are plotted in figures 2 and 4 for
comparison.

By letting t approach infinity the flow past a circular cylinder
is obtained and the result is shown @ table 3 and figure 6. Imai
(reference13) has calculated the subsonic flow past a circular cylinder
to the sixth ~wer of the stream Mach number. These results me shown
in table 3 and figure 6. The results obtained by Wang (reference9)
show a higher velocity throughout. This is due to the fact that Wang
used six terms in the series assumed for the velocity potential. In the
present investigation only four terms of the series are used smd hence
lower values for the velocities sre

CONCLUDING

The velocities obtained by the

obtained.

DISCUSSION

variational method show more devia-
tion from the incompressible flow than indicated by Kaplan, Hooker, and
other investigators. From the velocity distribution shown in figures 2
and 4, it is seen that the variational method yields a.good result for
flow past a thick body at a lowllach number, as well as for flow past a
thin body at a Mgh Mach number. There is close agreement with Perl’s
results at both thiclmess ratios.

The results obtatied by the Variatioti method for the flow past an
elliptic cylinder of 0.1 thiclmess ratio at a Mach number ~ = 0.8 are
given in table 2. The maximum veloci~ occurs at the ends of the minor
axis and is given as q/U = 1.2255. With the aid of the well-bown
relation between velocity and the stream density for adiabatic flow, the
maximum stream density is computed for the above velocity. A maximum
stream density of 0.575 is obtained by such computation. Using the
Emndtl-Busemann method, the second approximation carried oti by
Schmieden and Kawalki (reference 14) shorn a maximum stream density of
0.583. Further, Schmieden and Kawalki indicate that the value of stream
density should naturally coincide with 0.5T8 givenby the sonic boundary.
The present method gives results higher than those of Kaplan (refer-
ence 2) and more in agreement with references 4 and 14.

For the flow past a circular cylinder, the pressure coefficients
obtained by the present method are between those of the I&andtl-Glauert
and K&m&-Tsien methods.

For flow past elliptic cylinders the pressure coefficients obtained
atq= IT/2 are higher than those from the K&&n-Tsien method also.
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From figures 3 and 5 it appears that the local Mach number has more
effeet than that indicated by the K&m&n-Tsien method. In figure ~ the
flow past a cylinder of 0.1 thichess ratio is shown at various Mach
nuuibers. At higher Mach nuubers the variational method gives results
which differ considerably from those obtained by other methods. This
detiation appears in HookerTs results to some extent, as shown in
figure 2. This may be due to the fact that the compressibilityeffect
is far higher at points where the local velocity is nearer the critical
value. The methods of Prandtl-Glauert and K&m&n-Tsien for obtaining
the compressibilityeffect are Mependent of the critical lhch number
of the flow. But in the variational method the critical Mach number
directly affects the coefzicients in the velocity potential. In fact,
at some value higher than the critical Mch nuuiberthe coefficients do
not converge on successive iterations.

The petit of zero pressure on the surface of a cylinder moves rear-
ward when compressibility is taken into account. This is not the ca8e
when the Prandtl-Glauert and K&m&n-Tsien methods are used. The imesti-
gations of Kaplan and Hooker, however, show this deviation which is
consistent with the experimental results.

New York University
I?ewYork, 1?.Y., August 1, 1949

Q
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APPENDIX A

EQUATIONS FOR FLOW PAST ELLIPTIC CYLINDER OF

1

The equations for the flow past an elliptic cytider of thickness

t-1

‘atiot+lat~= U/a. are as follows, where

so forth are certain definite integrals containing
and are defined at the end of the appendix.

First equation:

[ 1An 1. 333333qm2 - U2(6B + 6tK - 1. 18070817)

A, B, C, D, and

the parsmeter t

+
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Second equation:
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Third equation:

[ 1AU 1.06666667~2- u2(7~c + 24tL - 1*54737*) +

!.
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— -6B
t+l

Fourth equation:
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The definite integrals A,
foregoing equations are:

A=
r

(y - 1)4 dy

1 Y%Y + l)%t - 1)

J
m

B= (Y )4dY-1

1 +(Y + l)%t - 1)

J ‘Y
m

c = - 1) dy

1 (y+ 1)% - 1)

D=
J

“’ (y-l)4dy

1 (Y + I)% - 1)

-J(y)o
w

-1
4

E=
1 (y+ l)lo(yt - 1)

“f(y-y
m

F= 1)4 d

1 (y + l)lp(yt - 1)”

G= r (Y )4W-1

1 (y+ lp(fi - 1)

J’
w

H= (Y - 1)4 dy

1 (y +’l)%t - 1)

B, C, and so forth that occur in the

J
J

‘(2Y+1)W=
y% + 1)

P

L=

1 (y + 1):(W + 1)

Y

J’
co

M= Y@

1 (Y + l)4(Y-t+ 1)

J
m

P= $ dy

(y + l)8(y-t+ 1)

J’
m

Q=
Y4dy

1 (y + lp(yt + 1)

Jr y5 *
R=

(y + l)lp(yt + 1)
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TABLE 1

FLOW PAST E~IC CYLINDER WITH b/a = 0.5 AND ~ = 0.5

j

Eccentric
Veloci@ distribution, q/u

Incompressible
flow

Variational Hooker’s
Kaplan’s

re suitsmethod method (reference 2)

o
.7085

1.1339
1:$417
1.4412
1.4867
1.5

------

0.6655
1.1054
1.3731
1.5450
1.6468
1.6810

-----

0.667
“1.130
1.380
1.513
1.575
1.607

------

0.6683
1.1310
1.3869
1.5184
l.ymg
1.5994
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TABLE 2

FLOW PAST AN EILCFTIC CXUMDER WITH b/a = 0.1 AND ~ = 0.8

Velocity distribution, q/u
ccentric
angle,

bcompre ssible variational “Perl’s solution Kaplan$s ~

( d~g) flow method (reference 4) results
(reference 2)

...r
o 0 0 “o o
5 ;72$ ..6982 ------ .6898

10 .9256 “ ----;- .9137
15 1.0307 1.0026 ------ “.9886
20 1.0608 1.0399 -+ ---- 1.0237
30 1.0839 1.0845 1.145 1.0629
40 1.0924 1.1199 1.1625 . 1.0918
50 1:0962 1.1526 1.1754 ~ l.11~
60 L 0983 1.1819 1.1827 1,.1408

1.@94 1.2052 1.1883 - 1.1589
z -~ 1.0999 1.2203 1.1903 1.1706
90 1.10 1.2255 1.1913 “ 1.1747

r..

--*

\
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FLOW PAST A

NACA TN 2666

WEEN ~ = 0.4

lccentric
angle,

(d~g)
Incompressible

flow

0
.3473
.6840

1.0000
1.2856
1.5321
1.7321
1.8w4
1.9696
2.0000

Veloci@ distribution, q/u

?resent solution w~’s ?%SliLts Rayleigh-Janze
method (thirdwith four terms (reference 9) ~pwo-tion)

------

0.2966
.6002
.9132

1.2305
1.5381
1.814g
2.0366
2.1804
2.2303

------

0.3194
.6349
.9410

1.2470
1.5522
1.8450
2.0974
2.2712
2 ● 3335

0
.3104
.6439
.9588

1.2658
1.5613
1.8355
2.0752
2.2269
2. 28ko
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Figure 5.- Pressure distribution on surface of elliptic cylinder of
thictiess ratio 0.1 with ~ = 0.8. .
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Figure 7.- Pressuw distribution on surface of elliptic cylinder
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